COMPÓSITOS CIMENTÍCIOS COM PROPRIEDADES ELÉTRICAS (CCPE) APLICADOS À INFRAESTRUTURA URBANA: UMA BREVE REVISÃO
DOI:
https://doi.org/10.14244/engurbdebate.v6i1.151Keywords:
materiais da construção civil, impedância, condutividade, propriedades multifuncionaisAbstract
The demand for infrastructure that meets economic, social and environmental needs requires technological advances from research in a wide range of fields, including the development and improvement of cementitious composites such as mortars and concretes, which are widely used in infrastructure projects. In this sense, academia has sought to add new functionalities to cementitious composites, to the point that improving their electrical properties has gained prominence. When improved, these properties allow the composites to be used as electrical energy collectors, traffic detection systems, electromagnetic shielding, structural monitoring, among others. To this end, electrically conductive materials such as carbon and metals are incorporated into the cementitious matrix. Studies have shown that such composites have multifunctional characteristics, since in addition to functioning as structural components, for example, in the case of a bridge, a tunnel or a pavement, they are also capable of offering other functionalities such as generating, transmitting or storing electrical energy. However, more research is needed to overcome all the technical, economic and environmental challenges, aiming at the use of cementitious composites with electrical properties (CCEPs) in real constructions. Thus, the objective of this work is to present an overview of CCEPs research that contributes to the identification of fields for future research.
References
BIRGIN, H. B.; D’ALESSANDRO, A.; LAFLAMME, S.; UBERTINI, F. Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing. Sensors, v. 20, 4518, 2020. DOI: 10.3390/s20164518.
BIRGIN, H. B.; D’ALESSANDRO, A.; UBERTINI, F. A new smart sustainable earth-cement composite doped by carbon microfibers with self-sensing properties. Developments in the Built Environment, v. 14, 100168, 2023. DOI: 10.1016/j.dibe.2023.100168.
BRASIL. SECRETARIA DE COMUNICAÇÃO SOCIAL. Investimentos em infraestrutura voltam a ser prioridade. 2023. Disponível em: https://www.gov.br/secom/pt-br/assuntos/noticias/2023/12/governo-lula-recupera-investimentos-na-infraestrutura-do-brasil. Acesso em: 27 ago. 2024.
CASSOL, D.; RECH, G. L.; THOMAZI, E.; PEROTTONI, C. A.; ZORZI, J. E. Influence of an over calcined calcium oxide-based shrinkage-compensating admixture on some properties of a self-compacting concrete. Matéria (Rio J), v. 27, n. 4, e20220171, 2022. DOI: 10.1590/1517-7076-rmat-2022-0171.
CHUANG, W.; GENG-SHENG, J.; BING-LIANG, L.; LEI, P.; YING, F.; NI, G.; KE-ZHI, L. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceramics International, v. 43, n. 17, p. 15122-15132, 2017. DOI: 10.1016/j.ceramint.2017.08.041.
CHUNG, D. D. L. Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, v. 12, n. 1, p. 1-19, 2021a. DOI: 10.1080/19475411.2020.1843560.
CHUNG, D.D.L. Pitfalls and Methods in the Measurement of the Electrical Resistance and Capacitance of Materials. J. Electron. Mater., v. 50, p. 6567-6574, 2021b. DOI: 10.1007/s11664-021-09223-w.
CHUNG, D. D. L.; XI, X. A review of the colossal permittivity of electronic conductors, specifically metals and carbons. Materials Research Bulletin, v. 148, 111654, 2022. DOI: 10.1016/j.materresbull.2021.111654.
COSOLI, G.; MOBILI, A.; TITTARELLI, F.; REVEL, G. M.; CHIARIOTTI, P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Appl. Sci., v. 10, 9152, 2020. DOI: 10.3390/app10249152.
D’ALESSANDRO, A.; UBERTINI, F.; MATERAZZI, A. L.; PORFIRI, M. Electrical modelling of carbon nanotube cement-based sensors for structural dynamic monitoring. AIP Conf Proc., 1603, p. 23-30, 2014. DOI: 10.1063/1.4883038.
DEHGHANI, A.; ASLANI, F. Piezoresistive Sensing of Cementitious Composites Reinforced with Shape Memory Alloy, Steel, and Carbon Fibres. Construction and Building Materials, v 267, 121046, 2021a. DOI: 10.1016/j.conbuildmat.2020.121046.
DING, S.; DONG, S.; ASHOUR, A.; HAN, B. Development of sensing concrete: Principles, properties and its applications. Journal of Applied Physics, v. 126, n. 24, 241101, 2019. DOI: 10.1063/1.5128242.
DING, S.; XIANG, Y.; NI, Y-Q.; THAKUR, V. K.; WANG, X.; HAN, B.; OU, J. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today, v. 43, 101438, 2022. DOI: 10.1016/j.nantod.2022.101438.
DONG, S.; ZHANG, W.; D’ALESSANDRO, A.; HAN, B.. Developing highly conductive asphalt concrete by incorporating stainless steel fibers/wires for smart pavement. Journal Of Materials Science, [S.L.], v. 58, n. 27, p. 11062-11084, 2023. DOI: 10.1007/s10853-023-08736-5.
DONG, W.; LI, W.; TAO, Z.; WANG, K. Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, v. 203, p. 146-163, 2019. DOI: 10.1016/j.conbuildmat.2019.01.081.
DOWNEY, A.; D’ALESSANDRO, A.; UBERTINI, F.; LAFLAMME, S. Automated crack detection in conductive smart-concrete structures using a resistor mesh model. Measurement Science and Technology, v. 29, n. 3, 035107, 2018. DOI: 10.1088/1361-6501/aa9fb8.
FRĄC, M., PICHÓR, W. Piezoresistive properties of cement composites with expanded graphite. Composites Communications, v. 19, p. 99–102, 2020. https://doi.org/10.1016/j.coco.2020.03.005.
HAGHGOO, M.; ANSARI, R.; HASSANZADEH-AGHDAM, M. K. Prediction of piezoresistive sensitivity and percolation probability of synergetic CNT-GNP conductive network composite. Sensors and Actuators A: Physical, v. 336, 113414, 2022. DOI: 10.1016/j.sna.2022.113414.
HAN, B.; ZHANG, K.; BURNHAM, T.; KWON, E.; YU, X. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection. Smart Materials and Structures. 22, 015020, 2013. DOI 10.1088/0964-1726/22/1/015020.
HAN, J.; PAN, J.; CAI, J.; LI, X. A review on carbon-based self-sensing cementitious composites. Construction and Building Materials, v. 265, 120764, 2020. DOI: 10.1016/j.conbuildmat.2020.120764.
MARÇULA, S.C. (2024). Análise de Propriedades Elétricas e Mecânicas de Argamassa com Incorporação de Microfibra de Carbono. Dissertação (Mestrado). Universidade Estadual de Campinas (UNICAMP). Faculdade de Tecnologia. Programa de Pós-Graduação em Tecnologia. Limeira-SP.
MO, Y.L.; GAUTAM, A.; CHEN, Y.; CHEN, J.; JOSHI, B. Electrical impedance of carbon nanofiber aggregates. In: LIEW, M. S.; NGUYEN-TRI, P.; NGUYEN, T. A.; KAKOOEI, S. Micro and Nano Technologies, Smart Nanoconcretes and Cement-Based Materials. [S.l]: Elsevier, 2020. p. 333-349. DOI: 10.1016/B978-0-12-817854-6.00014-3.
OZAKI E SILVA, C.T. (2023). Comparação das propriedades mecânicas e condutividade elétrica de argamassas com adição de grafite em pó. Dissertação (Mestrado). Universidade Estadual de Campinas (UNICAMP). Faculdade de Tecnologia. Programa de Pós-Graduação em Tecnologia. Limeira-SP.
OZAKI E SILVA, C.T.; SILVA, J.B.L.P.; LINTZ, R.C.C.; GACHET, L.A. Mortars with addition of powdered graphite: Mechanical and electrical properties. Materials Today: Proceedings (2023). DOI: 10.1016/j.matpr.2023.03.489.
QIN, H.; DING, S.; ASHOUR, A.; ZHENG, Q.; HAN, B. Revolutionizing infrastructure: The evolving landscape of electricity-based multifunctional concrete from concept to practice. Progress in Materials Science. 145, 101310, 2024. DOI 10.1016/j.pmatsci.2024.101310.
SARWARY, M. H.; YILDIRIM, G.; AL-DAHAWI, A.; ANIL, Ö.; KHIAVI, KA.; TOKLU, K.; SAHMARAN, M. Self-Sensing of Flexural Damage in Large-Scale Steel-Reinforced Mortar Beams ACI Mater. J., v. 116, p. 209-221, 2019. DOI: 10.14359/51715581.
SEGURA, I.; FANECA, G.; TORRENTS, J. M.; AGUADO, A. Self-sensing concrete made from recycled carbon fibres. Smart Materials and Structures, v. 28, n. 10, 105045, 2019. DOI: 10.1088/1361-665x/ab3d59.
SCHOLLE, P.; SINAPIUS, M. A Review on the Usage of Continuous Carbon Fibers for Piezoresistive Self Strain Sensing Fiber Reinforced Plastics. J. Compos. Sci., v. 5, n. 4, 96, 2021. DOI: 10.3390/jcs5040096.
SILVA, J. B. L. P. (2024). Estudo do desempenho físico-mecânico, elétrico e piezorresistivo de compósito cimentício autossensível produzido com resíduo de lona de freio e fibra de carbono. Tese (Doutorado). Universidade Estadual de Campinas (UNICAMP). Faculdade de Tecnologia. Programa de Pós-Graduação em Tecnologia. Limeira-SP.
SILVA, J.B.L.P.; LINTZ, R.C.C. E; GACHET, L.A. Analysis of the electrical and mechanical properties of cement composite produced with brake lining waste. Advances in Science And Technology. 149, 21-29, 2024a. DOI:10.4028/p-dR94Iv.
SILVA, J. B. L. P.; LINTZ, R. C. C.; GACHET, L. A. Análise do efeito piezoresistivo em compósito cimentício autossensível sob diferentes disposições de carregamento uniaxial. In: Congresso Nacional Reabilitar & Betão Estrutural 2020, LNEC, Lisboa. p. 849-857, 2021. ISBN: 978-989-53078-1-4 https://reabilitarbe2020.pt/r&be2020_final.pdf.
SILVA, J.B.L.P.; OZAKI E SILVA, C.T.; MARÇULA, S.C.; ROS, P.S.; LINTZ, R.C.C. E; GACHET, L.A. Self-sensing cement composite based on the piezoresistive effect with brake lining waste. Construction and Building Materials, v. 456, p. 139273, 2024b. DOI: 10.1016/j.conbuildmat.2024.139273.
WANG, L.; ASLANI, F. A review on material design, performance, and practical application of electrically conductive cementitious composites. Construction and Building Materials, v. 229, 116892, 2019. DOI: 10.1016/j.conbuildmat.2019.116892.
WANG, L.; ASLANI, F. Mechanical properties, electrical resistivity and piezoresistivity of carbon fibre-based self-sensing cementitious composites. Ceramics International, v. 47, n. 6, p. 7864-7879, 2021a. DOI: 10.1016/j.ceramint.2020.11.133.
WANG, X.; DONG, S.; ASHOUR, A.; HAN, B. Energy-harvesting concrete for smart and sustainable infrastructures. Journal of Materials Science. 56:16243–16277, 2021. DOI 10.1007/s10853-021-06322-1.
YOO, D-Y.; YOU, I.; LEE, S-J. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors, v. 17, 1064, 2017. DOI: 10.3390/s17051064.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 João Batista Lamari Palma e Silva, Camila Tiemi Ozaki e Silva, Stephanie Cucolo Marçula, Rosa Cristina Cecche Lintz, Luísa Andréia Gachet

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.