PLATAFORMA DE MONITORAMENTO E SUPORTE À DECISÃO PARA O PLANEJAMENTO TERRITORIAL DO CIRCUITO DAS ÁGUAS PAULISTA
DOI:
https://doi.org/10.59550/engurbdebate.v2i1.13Palavras-chave:
Sensoriamento Remoto, SVM, Planejamento UrbanoResumo
Este artigo apresenta um protótipo de plataforma de monitoramento territorial para os municípios que compõem a região do Circuito das Águas Paulista. Desenvolvido a partir de uma API (Application Programming Interface), do Google Earth Engine (GEE), esse protótipo utiliza programação em javascript para detectar, quantificar e avaliar tendências de uso e ocupação da terra em escala intraurbana de maneira rápida e contínua. Para essa tarefa foram utilizados o classificador de aprendizagem de máquina SVM (Support Vector Machine) e o catálogo atualizado de imagens do Satélite Sentinel II, ambos disponibilizados gratuitamente na infraestrutura em nuvem do GEE. O baixo custo computacional e a boa performance obtida credenciam o protótipo desenvolvido como uma ferramenta adequada às necessidades de municípios de pequeno porte e baixo orçamento que, por sua vez, podem se consorciar para desenvolver uma plataforma comum, autônoma e customizada de inteligência geográfica para suporte à decisão.
Referências
ADAM, E. et al. Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using Rapid Eye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers. International Journal of Remote Sensing [s.l] v. 35, n. 10, p. 3440-3458, abr. 2014. DOI: http://dx.doi.org/10.1080/01431161.2014.903435. Acesso em: 30 mai. 2021.
BANTIN DE SOUZA, N. R. As políticas públicas no processo de formação e gestão do circuito das Águas Paulista. Orientador: Aguinaldo Fratucci. 2010. Monografia (Graduação em Turismo), Faculdade de Administração, Ciências Contábeis e Turismo, Universidade Federal Fluminense, Niterói. 2010. Disponível em: https://app.uff.br/riuff/handle/1/1577. Acesso em: 30 mai. 2021
ENGESAT. Imagens de Satélites e Geotecnologia. NDVI: criando índice de vegetação no global mapper. 2020. Disponível em: http://www.engesat.com.br/softwares/global-mapper/calculo-do-indice-de-vegetacao-ndvi-no-global-mapper/#:~:text=NDVI%20%C3%A9%20a%20abrevia%C3%A7%C3%A3o%20da,imagens%20geradas%20por%20sensores%20remotos. Acesso em: 18 agosto 2020.
ESA. European Space Agency. Sentinel-2 User Handbook. 2020. Disponível em: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a. Acesso em: 29 agosto 2020.
GORELICK, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. v. 202, p. 18-27, 2017. DOI: https://doi.org/10.1016/j.rse.2017.06.031. Disponível em: https://www.sciencedirect.com/science/article/pii/S0034425717302900. Acesso em: 30 mai. 2021.
IBGE. Instituto Brasileiro de Geografia e Estatística. Censo demográfico de 2010. Disponível em: https://censo2010.ibge.gov.br/resultados.html. Acesso em: 10 agosto 2020.
KAVZOGLU, T; COLKESEN, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. International Journal of Applied Earth Observation and Geoinformation, v. 11, n. 5, p. 352-359, out. 2009. DOI: https://doi.org/10.1016/j.jag.2009.06.002. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0303243409000464. Acesso em: 30 mai. 2021.
MARTINES, M. et al. Separability Analysis of Atlantic Forest Patches by Comparing Parametric and Non-Parametric Image Classification Algorithms. Journal Of Geographic Information System (jgis). [s.l] p. 567-578. out. 2019. DOI: https://doi.org/10.4236/jgis.2019.115035. Disponível em: https://www.scirp.org/journal/paperinformation.aspx?paperid=95805. Acesso em: 30 mai. 2021.
ONU. Organização das Nações Unidas. Agenda 2030. ONU Brasil. 2019. Disponível em: https://nacoesunidas.org/pos2015/agenda2030/. Acesso em: 12 de novembro de 2019.
SANTOS, E. M. Teoria e Aplicação de Support Vector Machines à Aprendizagem e Reconhecimento de Objetos Baseado na Aparência. Orientador: Herman Martins Gomes. Dissertação (Mestrado) - Centro de Ciências e Tecnologia, Coordenação de Pós Graduação em Informática, Universidade Federal da Paraíba, Campina Grande. 2002. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265. Acesso em: 30 mai. 2021.
SÃO PAULO. Estado. Plano Regional de Desenvolvimento Turístico do Circuito das Águas - SP (1972 A 1980). São Paulo: SERETE, 1982.
SÃO PAULO. Estado. Programa Município VerdeAzul. 2019 Disponível em: https://www.infraestruturameioambiente.sp.gov.br/verdeazuldigital/. Acesso em: 07 de novembro de 2019.
SPRIN, A. W. O jardim de granito: a natureza no desenho da cidade. Trad. Paulo Renato Mesquita Pellegrino. São Paulo: Edusp. 1995.
VAPNIK, V. N. The nature of Statistical learning theory. New York: Springer. 1995.
Downloads
Publicado
Versões
- 2021-06-24 (2)
- 2021-06-24 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Juliana Campos Degenario Ribeiro, Breno Malheiros de Melo, Marcel Fantin, Jeferson Cristiano Tavares, Julio Cesar Pedrassoli , Marcos Roberto Martines
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.